If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+8k-6=0
a = 2; b = 8; c = -6;
Δ = b2-4ac
Δ = 82-4·2·(-6)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{7}}{2*2}=\frac{-8-4\sqrt{7}}{4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{7}}{2*2}=\frac{-8+4\sqrt{7}}{4} $
| (x-7)^(3)-54=0 | | 3y+8+4y+64=180 | | 8z2+6z+1=0 | | v-1.4=8.7 | | x=-7x+11 | | 13x-7=(-46) | | x-7.47=8.11 | | 1x-35+5=3 | | 8.5x-6.3=70.2 | | 4k^2+2k+2=32 | | 2x^2=18.25 | | -8(p+2)=-6+(-4) | | 8=x/2=-7 | | 6x+2(15)=3x+4(15) | | 4k^2+2k+30=0 | | (x+15)+50=90 | | 5+2r/3=2 | | 7(b-7)=-10+(-4) | | 2/3x+1/6x-2=5/9+2x | | 5(80-x)=60(x-30) | | 8u+17=17 | | -5(k-(-2))=6 | | 11y+48=15y-12 | | −4=−2/9w | | 6x^2=3=387 | | 0(11)=2(c+2) | | 1.2m=7.5m+2.1=63 | | 8u+17=17 | | 4(5^-x/3)=20 | | 2x^2/(1-x)(1-x)=46 | | 7x-15+3=9 | | 11(w+1)=11 |